
Expert Systems with Applications 39 (2012) 129–141
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Decision tree based light weight intrusion detection using a wrapper approach

Siva S. Sivatha Sindhu a,⇑, S. Geetha b,1, A. Kannan a

a Department of Computer Science and Engineering, Anna University, Chennai 600025, India
b Department of Information Technology, Thiagarajar College of Engineering, Madurai 625015, India

a r t i c l e i n f o
Keywords:
Intrusion Detection System
Misuse detection
Genetic algorithm
Neural network
Decision tree
Neurotree
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.06.013

⇑ Corresponding author. Mobile: +91 9626644151.
E-mail addresses: sivathasindhu@gmail.com (S.S

tce.edu (S. Geetha), kannan@annauniv.edu (A. Kannan
1 Mobile: +91 9842550862.
a b s t r a c t

The objective of this paper is to construct a lightweight Intrusion Detection System (IDS) aimed at detect-
ing anomalies in networks. The crucial part of building lightweight IDS depends on preprocessing of net-
work data, identifying important features and in the design of efficient learning algorithm that classify
normal and anomalous patterns. Therefore in this work, the design of IDS is investigated from these three
perspectives. The goals of this paper are (i) removing redundant instances that causes the learning algo-
rithm to be unbiased (ii) identifying suitable subset of features by employing a wrapper based feature
selection algorithm (iii) realizing proposed IDS with neurotree to achieve better detection accuracy.
The lightweight IDS has been developed by using a wrapper based feature selection algorithm that max-
imizes the specificity and sensitivity of the IDS as well as by employing a neural ensemble decision tree
iterative procedure to evolve optimal features. An extensive experimental evaluation of the proposed
approach with a family of six decision tree classifiers namely Decision Stump, C4.5, Naive Baye’s Tree,
Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous net-
work pattern has been introduced.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional intrusion prevention strategies, such as firewalls,
access control schemes or encryption methods, have failed to prove
themselves to effusively protect networks and systems from
increasingly sophisticated attacks and malwares. The Intrusion
Detection Systems (IDS) turn out to be the proper salvage to this
issue and have become a crucial component of any security infra-
structure to detect these threats before they induce widespread
damage.

The design and construction of IDS is subjected to many con-
cerns including data collection, data pre-processing, intrusion rec-
ognition, reporting and response. Among these entities, intrusion
recognition is highly indispensible. This component compares the
audit data with the detection paradigms, which model the patterns
of intrusive or innocuous behavior, so that both successful and
unsuccessful intrusion attempts may well be identified and be
contained.

Intelligent IDS is a dynamic defensive system that is capable of
adapting to dynamically changing traffic pattern and is present
throughout the network rather than only at its boundaries, thus
helping to catch all types of attacks. The trivial factor that
ll rights reserved.

. Sivatha Sindhu), sgeetha@
).
complicates such an IDS model construction is the demand for an
automatically evolving system. The typical reasons that challenge
this process are huge network traffic volumes, highly imbalanced
data distribution, the difficulty to realize decision boundaries be-
tween normal and abnormal behavior, and a requirement for con-
tinuous adaptation to a constantly changing environment – of
course the toughest factor.

Besides these, a very serious hazard that is imposed on the IDS
is the ever growing audit database with patterns for each and every
packet that passes the IDS, consequently, slowing up the capability
of the IDS. More and more time is consumed as the database grows,
and more and more false positives are generated, which defeats the
purpose of IDS. This audit database is augmented with the real-
time traffic data upon which the IDS get trained. Our observation
has shown that this database contains irrelevant and redundant
features and hence the IDS may be referred to as intense-IDS. This
intensity impedes the training and testing process, consumes high-
er resource as well as offers poor detection rate. The optimum fea-
ture set needs to be identified by shredding the unnecessary
features and also the candidate instance subset is to be identified
for evaluation by deducing the redundant and noisy data patterns.
The resulting audio log is populated with only the candidate in-
stance subset and optimal feature subset, perhaps the very essen-
tial data points and hence the IDS may be referred as the
lightweight IDS. The dimensionality of the reduced feature space
(Mitra, Murthy, & Pal, 2002) is thus optimal and guarantees low
false alarms and less computational cost. The proposed method

http://dx.doi.org/10.1016/j.eswa.2011.06.013
mailto:sivathasindhu@gmail.com
mailto:sgeetha@ tce.edu
mailto:sgeetha@ tce.edu
mailto:kannan@annauniv.edu
http://dx.doi.org/10.1016/j.eswa.2011.06.013
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

130 S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141
employs wrapper based strategy where the feature selection pro-
cess is wrapped inside the classifier. The resultant probability of
the classifier’s detection rate is used as feedback inputs to select
the optimal features.

When confronted with these requirements, soft computing
techniques have shown to offer promising solutions due to the
high detection accuracy, fast processing times, ability to adapt
and exhibit fault tolerance and especially resilience against noisy
information. Humans are blessed with the characteristics of
sensing that something is not right, detecting the anomalous
patterns that differ from normal. It may be highly beneficial if
this trait is injected into the machines, especially for the IDS
model. Soft computing techniques impart the required artificial
intelligence to IDS to make them self functioning as much as
possible.

The proposed work is on developing advanced intelligent sys-
tems using ensemble soft computing techniques (Gaddam, Phoha
Kiran, & Balagani, 2007) for intrusion detection. Integration of
different soft computing techniques like neural network (NN),
genetic algorithm (GA), and decision tree (DT) (Amor, Benferhat,
& Elouedi, 2004; Benferhat & Tabia, 2005; Xiang & Lim, 2005)
has lead to discovery of useful knowledge to detect and prevent
intrusion on the basis of observed activity. Candidate instance
subset is generated by removing the redundant and noisy re-
cords from the audit log. The GA component imparts the feature
subset selection through a suitably framed fitness function. A
neurotree paradigm which is a hybridization of neural network
and decision tree is proposed for misuse recognition which can
classify known and unknown pattern of attacks. The hybridiza-
tion of different learning and adaptation techniques, overcome
individual limitations and achieve synergetic effects for intrusion
detection.
2. Related work

Shun and Malki (2008) presented a neural network-based IDS
for detecting internet-based attacks on a computer network.
Neural networks are used to identify and predict current and fu-
ture attacks. Feed-forward neural network with the back propa-
gation training algorithm was employed to detect intrusion.
Sarasamma, Zhu, and Huff (2005) proposed a novel multilevel
hierarchical Kohonen net to detect intrusion in network. Ran-
domly selected data points form KDD Cup (1999) is used to train
and test the classifier. The process of learning the behavior of a
given program by using evolutionary neural network based on
system-call audit data is proposed by Han and Cho (2006). The
benefit of using evolutionary neural network is that it takes les-
ser amount of time to obtain better neural networks than when
using conventional approaches. This is because they evolve the
structures and weights of the neural networks simultaneously.
They performed the experiment with the KDD intrusion detec-
tion evaluation data. Thomas and Balakrishnan (2009) addressed
the problem of optimizing the performance of IDS using fusion
of multiple sensors. The trade-off between the detection rate
and false alarms highlighted that the performance of the detec-
tor is better when the fusion threshold is determined according
to the Chebyshev inequality. A neural network supervised lear-
ner has been designed to determine the weights of individual
IDS depending on their reliability in detecting a certain attack.
The final stage of this data dependent fusion architecture is a
sensor fusion unit which does the weighted aggregation in order
to make an appropriate decision. The major limitation with this
approach is it requires large computing power and no experi-
mental results are available for their proposed approach. Linda,
Vollmer, and Manic (2009) presented an IDS-NNM – Intrusion
Detection System using Neural Network based Modelling for
detection of anomalous activities. The major contributions of this
approach are use and analyses of real network data obtained
from an existing critical infrastructure, the development of a
specific window based feature mining technique (Fayyad &
Uthurusamy, 2002), construction of training dataset using ran-
domly generated intrusion vectors and the use of a combination
of two neural network learning algorithms namely the Error-
Back Propagation and Levenberg–Marquardt, for normal behavior
modelling. Koutsoutos, Christou, and Efremidis (2007) present a
neural network classifier ensemble system using a combination
of neural networks which is capable of detecting network attacks
on web servers. The system can identify unseen attacks and cat-
egorize them. The performance of the neural network in detect-
ing attacks from audit dataset is fair with success rates of more
than 78% in detecting novel attacks and suffers from high false
alarms rates. An ensemble combining the conventional neural
network with a second module that monitors the server’s system
calls results in good prediction accuracy.

Comprehensibility, i.e., the explain-ability of learned knowledge
is vital in terms of usage in reliable applications like IDS (Joo, Hong,
& Han, 2003). The existing NN based IDS discussed in the literature
lack comprehensibility and this is incorporated by means of ex-
tended C4.5 decision tree. Also a variation in activation function
is proposed in order to reduce the error rate thus increasing the
detection performance.

Prema Rajeswari and Kannan (2008) discusses a rule based ap-
proach using enhanced C4.5 algorithm for intrusion detection in
order to detect abnormal behaviors of internal attackers through
classification and decision making in networks. The enhanced
C4.5 algorithm derives a set of classification rules from KDD data
set and then the generated rules are used to detect network intru-
sions in a real-time environment. An intrusion detection based on
the AdaBoost algorithm is proposed by (Weiming Hu, Wei Hu, &
Maybank, 2008). In this algorithm, decision stumps are used as
weak classifiers and decision rules are provided for both categori-
cal and continuous features. They combined the weak classifiers
for continuous attributes and categorical attributes into a strong
classifier. The main advantage of this approach is that relations be-
tween these two different types of features are handled naturally,
without any type conversions between continuous and categorical
attributes. Additionally they proposed a strategy for avoiding over-
fitting to improve the performance of the algorithm. Yasami and
Mozaffari (2009) presents a host based IDS using combinatorial
of K-Means clustering and ID3 decision tree learning algorithms
for unsupervised classification of abnormal and normal activities
in computer network. The K-Means clustering algorithm is first
applied to the normal training data and it is partitioned into K clus-
ters using Euclidean distance measure. Decision tree is constructed
on each cluster using ID3 algorithm. Anomaly scores value from
the K-Means clustering algorithm and decisions rules from ID3
are extracted. Resultant anomaly score value is obtained using a
special algorithm which combines the output of the two algo-
rithms. The threshold rule is applied for making the decision on
the test instance normality. Performance of the combinatorial ap-
proach is compared with individual K-Means clustering, ID3 classi-
fication algorithm and the other approaches based on Markovian
chains and stochastic learning automata.

Unlike existing decision tree based IDS discussed above the gen-
erated rules fired in this work are more efficient in classification of
known and unknown patterns because the proposed neurotree
detection paradigm incorporates neural network to preprocess
the data in order to increase the generalization ability. But the
existing decision tree based approaches discussed in the literature
lack generalization and so the ability to classify unseen pattern is
reduced.

S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141 131
3. Design of proposed system

The proposed system has four phases

Phase I - Preprocessing of network traffic pattern (removal of
redundant data)
Phase II - Feature extraction (GA)
Phase III - Post-processing (normalization)
Phase IV - Classification of traffic patterns (neurotree)

3.1. Preprocessing of network traffic pattern

The major weakness with KDD data set is the presence of
redundant records. The occurrence of redundant instances causes
the learning algorithm to be biased towards frequent records and
unbiased towards infrequent records. As the percentage of records
for R2L class is very less in original KDD dataset the learning algo-
rithm is unbiased towards R2L records due to the redundant and
enormous records present in class like DoS. These redundant re-
cords are removed in order to improve the detection accuracy.

3.2. Rationale for the choice of GA in feature extraction

3.2.1. Individual’s encoding
In order for a GA (Stein, Chen, Wu, & Hua, 2005) to efficiently

search optimal features from such large spaces, careful attention
has to be given to both the encoding chosen and the fitness func-
tion. In this work, there is a natural encoding of the space of all
possible subsets of a feature set, namely, a fixed-length binary
string encoding in which the value of the ith gene {0, 1} indicates
whether or not the ith feature (i = 1 to 41) from the overall feature
set is included in the specified feature subset. Thus, each individual
chromosome in a GA population consists of fixed length, i.e., 41-bit
binary string representing some subset of the given feature set. The
advantage of this encoding is that a standard representation and a
well understood GA can be used without any modification.

3.2.2. Fitness function
Each member of the current GA population represents a com-

peting feature subset that must be evaluated to provide fitness
feedback to the neurotree. This is achieved by invoking neurotree
with the specified feature subset and a set of training data (which
is condensed to include only the feature values of the specified fea-
ture subset). The neurotree produced is then tested for detection
accuracy on a set of unseen evaluation data. We aim to enhance
the detection accuracy of the IDS which is indirectly achieved by
maximizing the sensitivity and specificity of the classifier. Hence,
this knowledge is imparted into the IDS through the fitness func-
tion of the GA module. As a result the fitness function is formulated
as

Fitness ¼ a � ð1=Count of OnesÞ þ b � Sensitivityþ c

� Specificity ð1Þ

Sensitivity ¼ TP
TPþ FN

ð2Þ

Specificity ¼ TN
TNþ FP

ð3Þ

Fitness of a chromosome is evaluated based upon the sensitivity
and specificity from the validation dataset and number of features
present in a chromosome. Here TP and TN are the number of records
correctly classified in normal and abnormal classes respectively.
Similarly FP and FN are the number of records incorrectly classified
in normal and abnormal classes respectively. Count of ones is the
number of ones present in the chromosome. If two subsets attain
the same performance, while having different number of features,
the subset with fewer features have been chosen. Among specificity,
sensitivity and number of features, number of features is of less
concern, so more weightage to specificity (c = 0.4) and sensitivity
(b = 0.4) is given than number of features (a = 0.2) to be selected.

3.2.3. Genetic operators
The other genetic operators like crossover, mutation and selec-

tion applied are that of the general simple GA’s i.e., uniform cross-
over, simple mutation and tournament selection.

3.2.4. Algorithm for feature selection

GA_Feature_Selection(){
Input: Encoded binary string of length n (where n is the

number of features being passed), number of generations,
population size, crossover probability (Pc), mutation
probability (Pm).

Output: A set of selected features that maximize the
sensitivity and specificity of IDS.

1. Initialize the population randomly with the size of each
chromosome to be 41.

Each gene value in the chromosome can be ‘0’ or ‘1’. A bit
value of ‘0’ represent the corresponding feature is not
present in chromosome and ‘1’ represent the feature is
present.

2. Initialize a = 0.2, b = 0.4, c = 0.4, N (total number of records
in the training set), Pc and Pm.

3. for each chromosome in the new population{
a. Apply uniform crossover and mutation operator to the

chromosome with the specified probability Pc and Pm.
b. Evaluate fitness = a � (1/Count of Ones) + b � Sensitivity + c
� Specificity}

4. If (Current_fitness � Previous_fitness < 0.0001) then Quit
5. Select the top best 50% of chromosomes into new

population using tournament selection.
6. If number of generations is not reached, go to line 3.}
The above is an abstracted description of the algorithm execution.
As a whole, the execution of the combined GA and neurotree algo-
rithm is a wrapper approach. Each iteration results in a decision
tree. After n iterations, a series of trees will be obtained, the best
of which could be used to generate rules. The tree with the highest
sensitivity and specificity is identified to be the best tree. Thus best
set of features are extracted (Benferhat & Tabia, 2005; Liu & Yu,
2005) based on sensitivity and specificity values. The performance
of the IDS is compared with a family of decision tree classifiers
namely Decision Stump, C4.5, Naive Baye’s Tree, Random Forest,
Random Tree and Representative Tree model.

3.3. Post-processing of resulting feature vector

In the proposed wrapper approach based IDS the post-process-
ing of the resulting feature vectors is responsible for preparing the
following analysis by providing normalization as well as format
conversions on the feature vectors. This step is introduced to make
the approach more flexible and allow for different analysis or clas-
sification approaches. Before proceeding to evaluate the perfor-
mance of the classifier, the discrimination capability of the
proposed features is to be analyzed. The experiment involves for-
mation of different dataset with different number of class types
and with various feature vectors generated by different feature
extraction algorithm ranging from best first to rank search. Hence

132 S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141
the feature set formed has to be normalized before feeding them
into the classifier for training, to provide a uniform semantics to
the feature values. A set of normalized feature vectors as per the
data smoothing function given in Eq. (4)

xNew ¼
xCurrent �MIN
MAX �MIN

ð4Þ

where, x is the numerical value of the attribute, MIN is the mini-
mum value for the attribute that x belongs to, and MAX is the max-
imum values for the attribute that x belongs to.

3.4. Rationale for the choice of neurotree as classifier

The learning steps of a neurotree detection methodology are as
follows. First, a network structure is defined with a fixed number of
inputs, hidden nodes and outputs. Second, an algorithm neurotree
is chosen to realize the learning process. This algorithm uses bag-
ging approach which generates multiple training datasets from the
original KDD dataset and then trains multiple neural networks
(back propagation) named neural network ensemble. The pre-
dicted results produced by these neural networks are combined
based on the voting algorithm. Then, the trained NN ensemble is
employed to generate a new training set through replacing the de-
sired class labels of the original training examples, with those out-
put from the trained NN ensemble. Some extra training examples
are also generated from the trained NN ensemble and added to
the new training set. Finally, an enhanced C4.5 decision tree is
grown from the new training set. The fusion of improved NN and
enhanced C4.5 provides higher detection rates on unseen samples
than the system only applies C4.5 to IDS.

3.4.1. Neural network ensemble
Neural networks have been widely used in anomaly intrusion

detection as well as in misuse intrusion detection. There are two
approaches for implementing neural network for misuse detection
(Cannady, 1998). The first approach incorporates the neural net-
work module into the existing or modified expert system. This ap-
proach uses the neural network to preprocess the incoming data
for suspicious activities and forwards them to the expert system.
This enhances the efficiency of the detection system. The second
approach employs the neural network as a stand alone system to
detect intrusion. In this method, the neural network process data
from the network audit logs and analyzes it for intrusion detection.
The proposed detection system employs the earlier approach and it
has three steps. In the first step it collects data randomly from the
KDD dataset for each NN and constructs a training dataset using
bagging approach. Bagging and boosting (Bauer & Kohavi, 1998;
Zhou & Jiang, 2004) are the two widely applied techniques for com-
bining multiple classifiers in order to improve the prediction accu-
racy. These techniques aggregate multiple hypotheses produced by
the same learning algorithm (neural network) invoked over differ-
ent distributions of KDD dataset. They generate a classifier with a
smaller error on the dataset as it combines multiple hypotheses
which individually have a huge error. Bagging (Bauer & Kohavi,
1998) refers to Bootstrap AGGregatING. In bagging if a single clas-
sifier is unstable i.e., it has high variance, the aggregated classifier
(Zhou & Jiang, 2004) (neural ensemble) has a smaller variance than
a single base classifier. Boosting generates a series of neural net-
works whose training data sets are determined by the performance
of the previous networks. Training instances that are wrongly pre-
dicted by the previous networks will play major roles in the train-
ing of the later networks. This results in high error rate if the initial
neural network trained produces false prediction results. Also bag-
ging is more suitable if the induced classifier is unstable. As neural
network and decision tree are unstable classifiers bagging
approach is employed in the proposed work. Bagging creates a
training dataset by sampling with replacement ‘n’ times from the
dataset containing ‘n’ records. The created dataset have some
duplicated records and some of the records are not selected from
original dataset. These unpicked records are placed in the testing
set. As the KDD data set have large number of records, about
36.8% of the original records is placed in the testing set.

Proof
Consider there are ‘n’ records in the dataset then the probability

of particular record being picked is 1/n. Therefore the probability of
record not being picked is 1 � 1/n. As these records are picked ‘n’
times then the chance that particular record not being picked is
(1 � 1/n)n � e�1 = 0.368 for n > 20, where e is the base of natural
logarithms (2.7183). From this it can be concluded that around
36.8% of the original unique records are placed in the testing set
and about 63.2% of unique records are placed in the training set.
Some of the records are repeated in training set and the total size
of the generated training set is same as that of the original dataset.

In the second step, each of the neural networks is trained using
training dataset generated to identify the network pattern based
on feature vector. Some extra training examples are also generated
from the trained NN ensemble and added to the training set.

In the final stage the trained neural network ensemble is em-
ployed to generate a new training set through replacing the desired
class labels of the original training examples, with those output
from the trained NN ensemble. The network pattern is identified
based on the predicted output from each of the NN using voting
algorithm. Voting algorithm chooses the class label receiving most
number of votes as the final output of the ensemble.

3.4.2. Analysis of error rate of neural network
During the learning phase the weights in the NN is modified. In

conventional NN, all weights are modified based on the error value.
The error value is calculated by calculating the difference between
the actual output and the predicted output. The error value is then
propagated back from the top layer to lower layers to be used at
these layers to modify connection weights. In this work, improved
NN is employed in order to reduce the error rate (i.e., false positive
and false negative error) of IDS, so as to increase its performance.

To achieve this weight values are adjusted based on the ratio of
false positive and false negative error. The main aim of this analy-
sis is to find the relationship between individual error rates and to
find optimal weight values for w1 and w2 so as to reduce the total
error. False negative error occurs when a normal pattern is classi-
fied as an attack type whereas false positive error occurs when an
attacker is recognized as a legitimate person and allowed to enter
the organization network and access the available assets. This may
cause greater damage to the organization as the attacker who is
recognized as a legitimate user could destroy various resources
and may cause various security incidents. Therefore reducing false
positive error is very essential when compared to false negative
error. Thus false positive error is given higher weightage when
compared to false negative error. Here normal class is considered
as a positive class and anomaly classes are considered as negative
class.

Error rate ¼ w1 � false positive rateþw2 � false negative rate

ð5Þ
where w1 and w2 are weight values for false positive and false
negative error rate respectively. Best results are obtained when
w1 = 0.8 and w2 = 0.2.

3.4.3. Extended C4.5
Decision tree induction algorithms have been applied in various

fields. Some of the decision tree algorithms are ID3, C4.5 (Quinlan,
1986; 1993) and C5.0. C4.5 is an extension of the basic ID3
algorithm. The proposed system utilizes enhanced C4.5 which is

S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141 133
an improvement over C4.5. The ID3 and C4.5 algorithm utilizes the
information theoretic approach in classifying a network traffic pat-
tern. The decision tree is initially created from the pre-classified
dataset. Each instance is defined by values of the attributes. A deci-
sion tree consists of nodes, edges and leaves. A node of a decision
tree identifies an attribute by which the instance is to be parti-
tioned. Every node has a number of edges, which are labeled
according to a potential value of edges and a probable value of
the attribute in the parent node. An edge links either two of the
nodes in a tree or a node and a leaf. Leaves are labeled with class
labels for classification of the instance. Information gain is calcu-
lated for each of the attribute. The best attribute to divide the sub-
set at each stage is selected using the information gain of the
attributes. According to the values of these attributes the instances
are divided. If the value of attributes is nominal then a branch for
each value of the attribute is formed, but if it is numeric a thresh-
old value is determined and two branches are created. This proce-
dure is recursively applied to each partitioned subset of the
instances. The procedure ceases when all the instances in the cur-
rent subset belong to the same class. The concept of information
gain tends to favor attributes that have a large number of values.
For example, if there are set of records T and an attribute X that
has a distinct value for each record, then Info(X,T) is 0, thus
Gain(X,T) is maximal. To overcome this extended C4.5 algorithm
is used which employs gain ratio instead of information gain which
takes into account the potential information from the partition it-
self. Extended C4.5 deals with continuous attributes and missing
attributes which helps in improving the computation efficiency.
To categorize an unknown instance, one starts at the root of the
decision tree and follows the branch indicated by the result of each
test until a leaf node is arrived. The name of the class at the leaf
node is the resulting classification.

4. Research framework

4.1. Functional framework of wrapper based IDS

In the proposed wrapper based approach, after neurotree con-
struction in phase I, the analysis of specificity and sensitivity is pre-
sented in phase II as in Fig. 1. The purpose of this phase is to
analyze the relationship between the detection rate and error rate,
and find the optimal features which minimize the false alarm rates
for IDS. This objective is incorporated into the model via the fitness
function of the GA component that is employed for feature selec-
tion. The selected features which are significant are then used for
restructuring and improving the neurotree model. The improved
model is used for real time detection as in phase 2. The perfor-
mance of the IDS is optimized when the total errors are minimized.
Hence the objective of the fitness function is to minimize the false
alarm rates. In order to prevent over-fitting and to give more
exploration to the system, our proposed fitness evaluation frame-
work considers the problem as a three-goal objective function:
maximize the sensitivity, and maximize the specificity and mini-
mize the number of features.

4.2. Proposed neurotree algorithm

Algorithm: Neurotree algorithm
Input: Network audit data from MIT Lincoln Labs

T = {(x1, y1), (x2, y2), , (xn, yn)}, extra data ratio l, trials
of bootstrap sampling B, number of records in the training
set ‘n’

Output: Decision tree C4.5 DT
1. Train the neural network (NN) from T via Bagging. Call
the procedure NN⁄ = Bagging (T, NN, B)
2. Initialize generated training set T0 = /
3. Process the original training set with the trained NN⁄ and
classify an instance xi by counting votes for which NN⁄(xi)
represents the class with most votes

For (i = 1 to n)
Begin

a. Replace the class label (yi) with those output from the
neural ensemble y0i ¼ NN�ðxi : ðxi; yiÞ 2 TÞ

b. Add the new samples generated to the generated
training set T 0 ¼ T 0 [fðxi; y0iÞg

End
4. Generate extra training data from the trained NN⁄

For (j = 1 to l � n)
Begin

a. Randomly generate attribute vector x0j = Random()

and feed it into NN⁄ and add the outcome y0j to the attribute

vector as the last label. y0j ¼ NN�ðx0jÞ
b. Append the attribute vector ðx0j; y0jÞ to the generated

training set T 0 ¼ T 0 [fðx� j0; y0jÞg
End

5. Read records from the neural ensemble (NN⁄) generated
training set T0

6. Tokenize each record and store it in an array
7. Determine whether the attribute is discrete or
continuous
8. If (discrete attribute)

a. Find the probability of occurrence for each value for
each class

b. Find the entropy I(P) = �(p1 � log (p1) + p2 � log
(p2) + � � � + pn � log(pn))

c. Calculate the information gain Gain (X, T0) = Info
(T0) � Info (X, T0)

d. Compute GainRatioðX; T 0Þ ¼ GainðX;T 0Þ
SplitInfoðX;T 0Þ

where SplitInfo(X, T0) is the information due to the split of
T0 on the basis of the value of the categorical attribute X.

Thus SplitInfo(X, T0) is I jT
0
1 j
jT 0 j ;

jT 02 j
jT 0 j ; . . . ;

jT 0m j
jT 0 j

� �
where

ðT 01; T
0
2; . . . T 0mÞ is the partition of T0 induced by the value of

attribute X
Else

a. For continuous attributes the values are sorted and
the GainRatio for each partition is found

b. The partition with the highest GainRatio is
considered
9. Construct the extended C4.5 DT with the highest
GainRatio attribute as the root node and values of the
attribute as the arc labels
10. Repeat steps 7 to 9 until categorical attributes or the leaf
nodes are reached
11. Derive rules following each individual path from root to
leaf in the tree
12. The condition part of the rules is built from the label of
the nodes and the labels of the arcs: the action part will be
the classification (eg. Normal, Smurf etc)

Procedure Bagging (T, NN, B)
Begin

for (i = 1 to B)
{

a. Generate new training set of size ‘n’ with replacements
for each ‘B’ trials, Ti = bootstrap sample from T;

(continued on next page)

134 S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141
b. Generate a classifier NNi for each training set. Call
procedure NeuralNetwork(Ti)
}
Form ensemble neural network classifier NN⁄ by
aggregating the ‘B’ classifiers
Return trained neural ensemble NN⁄

End

Procedure NeuralNetwork (TrainingSet Ti)
Begin

1. Get input file Ti for training
2. Read records from Ti

3. Train the network by specifying the number of input
nodes, hidden nodes, output nodes, learning rate and
momentum
4. Initialize weights and bias to random values
5. Calculate output for each node

Node input =
P

(weight+output of previous layer
cells) + Bias value of nodes

Node output = 1/(1 + exp(�(Node input)))
Repeat until final output node is reached

/⁄Back propagating the errors⁄/
6. Calculate Error rate (ER) = E (FP, FN)
Therefore, ER ¼ ðW�

1FPþW2 � FNÞwhere FP is false positive
rate, FN is false negative rate, W1 and W2 are their
respective weight values.
7. Output cell error=Logistic function derivative � Error rate
where logistic function derivative = dF(x)/dx

=1/(1 � exp(�x)) � (1 � (1/(1 � exp(�x)))) � Error
rate
8. Hidden Cell error = Logistic function derivative � Sum
of(output layer cell error �weight of output layer cell
connection)
/⁄ Adjusting weights and bias⁄/
9. Net weight = Current Weight between hidden layer and
output + (output cell error � hidden layer cell
value � learning rate)
10. Net Bias value = Current bias Value + (learning
rate � output cell error)
11. Training is completed
12. Return trained neural network

End

4.3. Performance measurement indices

Performance of IDS is evaluated using the following indices

� Detection rate (DR) - Ratio between number of anomaly
(normal) correctly classified and total number of anomaly
(normal).
� Error rate (ER) - Ratio between number of anomaly (normal)

incorrectly classified and total number of anomaly (normal).
� True positive (TP) - Classifying normal class as normal class.
� True negative (TN) - Classifying anomaly class as anomaly class.
� False positive (FP) - Classifying normal class as an anomaly

class.
� False negative (FN) - Classifying anomaly class as a normal

class.
These are good indices of performance, as they measure what
percentage of intrusions the system is able to detect and how many
incorrect classifications are made in the course of action.

Other metrics include

� Kappa statistics- Used in assessing the degree to which two or
more raters, examining the same data, agree when it comes to
assigning the data to categories.
� Mean Absolute Error (MAE) - Average over the verification sam-

ple of the absolute values of the differences between forecast
and the corresponding observation.
� Root Mean Squared Error (RMSE) - Quadratic scoring rule which

measures the average magnitude of the error. Measures the dif-
ference between forecast and corresponding observed values,
are each squared and then averaged over the sample. Finally,
the square root of the average is taken.
� Relative Absolute Error (RAE) - Similar to the relative squared

error in the sense that it is also relative to a simple predictor,
which is just the average of the actual values.
� Relative Squared Error (RSE) - Calculates the total squared error

and normalizes it by dividing the total squared error of the sim-
ple predictor.

5. Test scenario

The proposed model is developed using Java and the neurotree
algorithm proposed is implemented as per the framework. The
stepwise procedure is as follows. The input to the system is given
as an attribute-relation file format (ARFF) file. The dataset is created
using the name specified in n@relation". The attributes are specified
under n@attribute" correspondingly specifying the type of attribute
and instances specified under n@data" are retrieved from the ARFF
file and then they are used for training by the classifier. This proce-
dure is followed for test set also. The classifier was trained and eval-
uated by using the preprocessed dataset, formed from the whole
KDD dataset (Tavallaee, Bagheri, Lu, & Ghorbani, 2009).

5.1. Test objectives

Objective #1: To investigate the impact of proposed feature
extraction algorithm on the performance of IDS.
Objective #2: To identify the set of misuse sensitive features
and to find out the discriminative power of selected features.
Objective #3: To evaluate the impact of proposed neurotree
classification algorithm on the proposed framework.
Objective #4: To investigate the detection capability of neuro-
tree with dataset containing 23 partitions namely normal and
specific attack type classes such as Neptune, Back, Smurf,
Buffer_overflow etc.
Objective#5: To investigate the impact of training and test
dataset on detection accuracy.
Objective#6: To investigate the impact of proposed neurotree
algorithm with various rule base approaches.

5.2. Preparation of test dataset

Regardless of the detection paradigm used, it is also vital to
use relevant and essential data in order to build and verify net-
work Intrusion Detection Systems. Unfortunately, for various rea-
sons, IDS is a field with a lack of good quality data. Therefore we
rely on the data set compiled for the 1999 KDD intrusion detec-
tion contest, by Massachusetts Institute of Technology’s (MIT)
Lincoln Labs (KDD Cup, 1999). The main reason for using this data
set is that we need relevant data that can be easily shared with
other researchers and developers, allowing them to duplicate
and improve our results. It is considered as a standard benchmark

Training Data

Feature
Selection

Data Pre-
processing

Sensitivity
Computation

Specificity
Computation

Phase I: Neurotree Model for Wrapper based IDS

Legitimate
Traffic

Patterns

Intrusive
Traffic

Patterns

Neurotree
Learning

Performance
Evaluation

Knowledge Base
from Neurotree

Model

Knowledge
Base from
Neurotree

Selecting feature set with
less features that

maximizes Sensitivity
and Specificity

Random Feature Set
Generation

Validation of Result

Neurotree
Learning

Knowledge
Updation

Knowledge TransferGA Component

Un-optimized
Feature Set

Phase II: Specificity and Sensitivity of the System

Relevant Features
with their Values

Optimized Feature Set

 Neurotree

Decision
Maker

Rule-set
Formation

Internet
Normal/
Attack
Types

Network
Traffic I/P

Pattern

(a)

(b)

Fig. 1. (a). Framework for the Phase 1 of the proposed wrapper based IDS. (b). Framework for the Phase 2 of the proposed wrapper based IDS.

S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141 135
for intrusion detection evaluations. In this dataset, forty-one attri-
butes that usually characterize network traffic behavior compose
each record. The record pattern may be normal or of attack type.
There are totally 22 different types of attacks reported and these
attacks fall into four main categories. They are DoS, U2R, R2L and
Probe.
5.2.1. Influence of feature vector
In this experiment, the traffic patterns of various feature vectors

are selected to see the influence on detectability. Initially, to
extract relevant features using proposed method, dataset is formed
using 41 attribute of feature vector and 22 different attack types.
These relevant features extracted are written into a file with their

Table 1
Distribution of records in training and test dataset before and after redundancy
removal.

Class Training set Test set

Total no.
of
records
in KDD
Cup 99

No. of
unique
records
after
redundancy
removal

Total no. of records
in KDD Cup 99

No. of unique
records after
redundancy
removal

Known Unknown Known Unknown

Normal 972781 812814 60593 - 47911 -
DoS 3883370 45927 223298 6555 5741 1717
Probe 41102 11656 2377 1789 1106 1315
R2L 1126 995 5993 10196 2199 555
U2R 52 52 39 189 37 163

136 S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141
corresponding data values for each and every class. This is done for
the below mentioned feature extraction algorithm in section.4
(used for comparison purpose) and the proposed algorithm. The re-
sult for proposed feature extraction is good when compared to
other algorithms. This satisfies objective#1 and objective#2.
5.2.2. Influence of neurotree classifier
To test the performance of the proposed method, our training

and test dataset consists of network traffic patterns from 10% of
KDD dataset (KDD Cup, 1999). It formed a network traffic database
containing diverse data with 22 different attack types and normal
class with selected feature vector to satisfy objective#4. Cross-val-
idation is applied to the dataset formed for estimating the general-
ization error based on re-sampling and to estimate how accurately
the intrusion detection paradigm performs in real time.

Experiments are conducted using stratified 10-fold cross-vali-
dation. In stratified10-fold cross-validation the sample of data in-
stances are split into 10 approximately equal partitions such that
the mean response value is approximately equal in all the parti-
tions i.e., each partition contains roughly the same proportions of
the all types of class labels present in the original dataset. After
Table 2
Distribution of Records for specific class in Training and Test Dataset before and after Red

S.No Specific class types Class To

Tra

1 Normal Normal 97
2 Smurf DoS 28

Neptune DoS 10
Back DoS 22
Teardrop DoS 97
Pod DoS 26
Land DoS 21

3 Satan Probe 15
Ipsweep Probe 12
Portsweep Probe 10
Nmap Probe 23

4 Warezclient R2L 10
Guess_passwd R2L 53
Warezmaster R2L 20
Imap R2L 12
Ftp_write R2L 8
Multihop R2L 7
Phf R2L 4
Spy R2L 2

5 Buffer_overflow U2R 30
Rootkit U2R 10
Loadmodule U2R 9
Perl U2R 3

Total 48
partitioning 9/10 of dataset is used for training i.e., 9 partitions
are used for performing analysis called training set and 1/10 data-
set is used for testing called validation set or testing set. This
procedure is repeated 10 times and the overall error rate is calcu-
lated by taking average of error rates on each partition i.e., the final
output is the average result of these ten folds. After ten-fold cross-
validation we found that TP rate and FP rate of classes like imap,
phf, perl, spy, and multihop are nil as the number of records in
these class types are less than 10 and therefore these records are
not present in most of the partition. This satisfies objective#3.
5.2.3. Detection with mismatch between training and test dataset
Here we evaluate the performance by using different types of

attacks in training and testing. Denote the training set and the test
set as TR and TE respectively. First, we created TR by including
anomaly records of 22 attack types and some normal traffic pat-
terns. On the other hand, TE is constituted of anomaly traffic pat-
terns of 22 attack types and normal patterns that are not present
in the training dataset. Essentially, TR and TE were made disjoint.
We also evaluated the detection performances in presence of other
mismatches. In the second case, we interchanged the roles of TR
and TE to form another two sets. The experimental results are
listed in Table 4, which reveals that the average classification rate
is 98.38%.
5.3. Preprocessing – redundancy check

In this analysis, redundant records present are replaced by a
single copy. After redundancy check it is found that most of the
redundant records are present in the anomaly class than normal
class. About 75% redundant records are present in both training
and test dataset. Some invalid records are found in the original
KDD and it is removed. This process assists the neurotree learner
from biasing towards frequent records.

Tables 1 and 2 shows the number of records present in the KDD
Cup 99 dataset and the number of records obtained after redun-
dancy removal for both training and test dataset. It is inferred that
undancy Removal.

tal no. of samples Unique samples

in Test Train Test

2781 60593 812814 47911
07886 164091 2646 665
72017 58001 41214 4657
03 1098 956 359
9 12 892 12
4 87 201 41

9 18 7

892 1633 3633 735
481 306 3599 141
413 354 2931 157
16 84 1493 73

20 0 890 0
4367 53 1231
1602 20 944
1 11 1
3 8 3
18 7 18
2 4 2
0 2 0

22 30 20
13 10 13
2 9 2
2 3 2

98431 292300 871444 56994

Table 4
Evaluation metrics comparison of NN⁄, extended C45 and neurotree.

Evaluation metrics NN⁄ Extended C4.5 Neurotree

Kappa statistic 0.945 0.9432 0.9729
Mean absolute error 0.0029 0.0073 0.0018
Root mean squared error 0.0542 0.0515 0.0364
Relative absolute error 5.366% 13.313% 3.3432%
Root relative squared error 32.8434% 31.1735% 22.0407%
Correctly classified instances 96.76% 96.66% 98.38%
Incorrectly classified instances 3.23% 3.34% 1.61%

Table 3
List of features selected by various feature selection algorithms.

S.No Algorithm #Features
selected

Features selected Detection
rate

1 BestFirst + ConsistencySubsetEval 11 duration, service, src_bytes, dst_bytes, count, srv_count, dst_host_srv_count,
dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate,
dst_host_serror_rate

97.01

2 GeneticSearch + CfsSubset
Eval

20 duration, protocol_type, service flag, src_bytes, dst_bytes, wrong_fragment,
num_failed_logins, logged_in, count, srv_serror_rate
srv_rerror_rate, same_srv_rate,diff_srv_rate, dst_host_count, dst_host_srv_count,

dst_host_diff_srv_rate, dst_host_srv_diff_host_rate, dst_host_serror_rate,
dst_host_srv_serror_rate

98.16

3 GeneticSearch + ConsistencySubsetEval 20 duration, service, src_bytes, wrong_fragment, hot, num_failed_logins, root_shell, num_root,
is_host_login, srv_count, serror_rate srv_serror_rate, srv_rerror_rate, same_srv_rate,
srv_diff_host_rate, dst_host_srv_count, dst_host_same_src_port_rate,
dst_host_srv_diff_host_rate, dst_host_rerror_rate, dst_host_srv_rerror_rate

97.86

4 GreedyStepwise + CfsSubsetEval 9 flag, src_bytes, wrong_fragment, hot, num_access_files, diff_srv_rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate, dst_host_srv_diff_host_rate

97.97

5 Ranker + ChiSquaredAttributeEval 36 src_bytes, dst_bytes, service, wrong_fragment, flag, dst_host_srv_diff_host_rate,
dst_host_diff_srv_rate, count, diff_srv_rate, srv_serror_rate, hot,dst_host_serror_rate,
srv_count,same_srv_rate

98.13

serror_rate, dst_host_srv_count, dst_host_same_srv_rate
dst_host_same_src_port_rate, dst_host_srv_serror_rate, rerror_rate
protocol_type, dst_host_rerror_rate, dst_host_count
num_compromised, dst_host_srv_rerror_rate, logged_in, srv_rerror_rate, land,
srv_diff_host_rate, duration, num_failed_logins, root_shell, is_guest_login,
num_file_creations, num_access_files, num_root

6 RankSearch + CfsSubsetEval 22 protocol_type,service,flag,src_bytes,dst_bytes,land,wrong_fragment, 98.4
hot, num_failed_logins, logged_in, num_compromised, serror_rate,
srv_serror_rate, rerror_rate, same_srv_rate,
diff_srv_rate,dst_host_same_srv_rate,dst_host_diff_srv_rate,dst_host_same_src_port_rate
,dst_host_srv_diff_host_rate,dst_host_serror_rate
, dst_host_srv_serror_rate

7 RankSearch + ConsistencySubsetEval 34 duration, protocol_type, service, flag, src_bytes, dst_bytes,land,wrong_fragment, hot,
num_failed_logins, logged_in, num_compromised, root_shell, num_file_creations,
is_guest_login, count, srv_count, serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate,

98.15

same_srv_rate, diff_srv_rate, srv_diff_host_rate, dst_host_count, dst_host_srv_count,
dst_host_same_srv_rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate,dst_host_srv_diff_host_rate, dst_host_serror_rate,
dst_host_srv_serror_rate, dst_host_srv_rerror_rate

8 Proposed feature selection 16 protocol_type, service, flag, src_bytes, dst_bytes, wrong_fragment, hot, logged_in, srv_count,
serror_rate, same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate,
dst_host_srv_diff_host_rate, dst_host_srv_serror_rate, dst_host_rerror_rate

98.38

9 Nil 41 All features in KDD dataset 98.47

S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141 137
there is a large reduction in number of records for DoS attack when
compared to other classes. Additionally, there are no duplicate re-
cords present in the training set for U2R attack.

5.4. Feature extraction – objective#1

A number of feature selection algorithms are proposed by vari-
ous authors. The purpose of this work is to examine the various
existing attribute selection algorithms in terms of detection accu-
racy and to compare those algorithms with the proposed algo-
rithm. Out of the total 41 network traffic features, used in
detecting intrusion, some features will be potential in revealing
evidence of anomalies. Therefore the predominant features are ex-
tracted from the 41 features based on specificity and sensitivity
metrics.

5.4.1. Attribute evaluators
Attribute evaluator is used for ranking all the features according

to some metric. Various attribute evaluators available in WEKA
(Weka, 2008) are used in this work which includes CfsSubsetEval,
ChiSquaredAttributeEval, ConsistencySubsetEval, InfoGainAttrib-
uteEval and GainRatioAttributeEval.

� CfsSubsetEval: Evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature
along with the degree of redundancy between them. Subsets
of features that are highly correlated with the class while hav-
ing low intercorrelation are preferred.
� ChiSquaredAttributeEval: Evaluates the worth of an attribute by

computing the value of the chi-squared statistic with respect to
the class.
� ConsistencySubsetEval: Evaluates the worth of a subset of

attributes by the level of consistency in the class values when
the training instances are projected onto the subset of
attributes.

Performance Comparision

0.96

0.965

0.97

0.975

0.98

0.985

0.99

Bes
tC

on
s

Gen
eti

cC
fs

Gen
eti

cC
on

s

Gree
dy

Cfs

Ran
kC

fs

Ran
kC

on
s

Ran
ke

rC
hi

Orgi
na

l

Prop
os

ed

Feature Selection Algorithms

D
et

ec
ti

on
 R

at
e

DR

Fig. 2. Performancecomparisons of various feature extraction algorithms.

Performance Comparision

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

Various Feature Selection Algorithms

E
rr

or
 R

at
e
ER

Bes
tC

on
s

Gen
eti

cC
fs

Gen
eti

cC
on

s

Gree
dy

Cfs

Ran
kC

fs

Ran
kC

on
s

Ran
ke

rC
hi

Orgi
na

l

Prop
os

ed

Fig. 3. Error rate for neurotree using various feature selection algorithms.

138 S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141
� GainRatioAttributeEval: Evaluates the worth of an attribute by
measuring the gain ratio with respect to the class.

GainR (Class, Attribute) = (H(Class) � H(Class|Attribute))/
H(Attribute).

� InfoGainAttributeEval: Evaluates the worth of an attribute by
measuring the information gain with respect to the class.

InfoGain (Class, Attribute) = H(Class) � H(Class|Attribute).

5.4.2. Search methods
These methods search the set of all possible features in order to

find the best set of features. Five search methods which includes
BestFirst, GeneticSearch, GreedyStepwise, Ranker and RankSearch
available in weak are used in this work for comparison purpose.

� BestFirst: Searches the space of attribute subsets by greedy
hillclimbing augmented with a backtracking facility. Setting
the number of consecutive non-improving nodes allowed con-
trols the level of backtracking done. Best first may start with
the empty set of attributes and search forward, or start with
the full set of attributes and search backward, or start at any
point and search in both directions (by considering all possible
single attribute additions and deletions at a given point).
� GeneticSearch: Performs a search using the simple genetic

algorithm.
� GreedyStepwise: Performs a greedy forward or backward

search through the space of attribute subsets. May start with
no/all attributes or from an arbitrary point in the space. Stops
when the addition/deletion of any remaining attributes results
in a decrease in evaluation. Can also produce a ranked list of
attributes by traversing the space from one side to the other
and recording the order that attributes are selected.
� Ranker: Ranks attributes by their individual evaluations. Use in

conjunction with attribute evaluators (ReliefF, GainRatio,
Entropy etc).
� RankSearch: Uses an attribute/subset evaluator to rank all attri-

butes. If a subset evaluator is specified, then a forward selection
search is used to generate a ranked list. From the ranked list of
attributes, subsets of increasing size are evaluated, ie. The best
attribute, the best attribute plus the next best attribute, etc....
The best attribute set is reported. RankSearch is linear in the
number of attributes if a simple attribute evaluator is used such
as GainRatioAttributeEval.

Various combination of features selection are tried and they in-
clude BestFirst + ConsistencySubsetEval, GeneticSearch + CfsSub-
setEval, GeneticSearch + ConsistencySubsetEval, GreedyStepwise +
CfsSubsetEval, Ranker + ChiSquaredAttributeEval, RankSearch +
CfsSubsetEval, RankSearch + ConsistencySubsetEval, Ranker + Inf-
oGainAttributeEval and Ranker + GainRatioAttributeEval gave the
same result as that of Ranker + ChiSquaredAttributeEval. Greedy-
Stepwise + ConsistencySubsetEval gave the same result as that of
BestFirst + ConsistencySubsetEval .The details of the combinations
and the features selected by each combination and their visualiza-
tion is described Table 3, Figs. 2 and 3. The proposed algorithm per-
forms the genetic search method to select the distinguishing
features. The GA parameters are: Chromosome length = 41 (one
gene per network traffic feature), Population Size = 100; Crossover
Probability = 0.7 and Mutation Probability = 0.001. It has been
found that the best set of features is selected within 1000 genera-
tions by the genetic algorithm. Finally, 16 salient features as in Ta-
ble 3 are selected by the proposed genetic algorithm and the
classification was based on these predominant features. Fig. 2
proves the findings of Breiman, Friedman, Olshen, and Stone
(1984) that detection accuracy is not much affected by the choice
of attribute selection measure. Although the detection accuracy
obtained by various algorithm like GeneticSearch + CfsSubsetEval,
Ranker + ChiSquaredAttributeEval, RankSearch + CfsSubsetEval,
RankSearch + ConsistencySubsetEval is near to the proposed algo-
rithm, the number of features selected by this algorithm is less
when compared to other algorithms. Thus the detection time of
proposed feature selection algorithm is less when compared to
other algorithms. However the number of features selected by
BestFirst + ConsistencySubsetEval and GreedyStepwise + CfsSub-
setEval is less when compared to other algorithms, their detection
accuracy is reduced by approximately 2%.

5.5. Post-processing � objective#2

The discrimination ability of proposed feature vectors is ana-
lyzed to evaluate the performance of the neurotree classifier. For
this the feature set formed has to be normalized before feeding
into the classifier for training to achieve a uniform semantics to
the feature values. A set of normalized feature vectors as per the
data smoothing function. Therefore, the extracted features are nor-
malized and written in two files. File#1 has records with five clas-
ses like DoS whereas File#2 has records formed with 23 different
classes including normal. Additional, some more files are created
with feature vectors extracted by other feature extraction
algorithm.

5.6. Building and training classifier

The feed forward neural network is used in the proposed work
due to its simple structure and easy realization. Back-propagation
algorithm is used to train the network. The number of NN used for
bagging is 10. Each NN consists of input layer with number of input
nodes equal to the number of selected features and the output

Performance Comparison

95.5
96

96.5
97

97.5
98

98.5
99

Neurotree NN* Extended C4.5

Detection Algorithms

D
et

ec
ti

on
 P

er
ce

nt
ag

e

Detection(%)

Fig. 4. Detection percentage comparison for neurotree, NN⁄ and extended C4.5.

S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141 139
layer based on number classes used. The output of each node is
propagated from the input layer through the hidden layer to the
output layer. The value of the output node ranges from 0 to 1.
The output node with the highest value is chosen and its corre-
sponding class is named as its output. Logistic activation function
is adapted in hidden layer while linear activation function is em-
ployed in output layer. The maximum number of epochs for train-
ing NN is set as 1000. In order to avoid over-fitting, training of NN
is stopped when the error value does not change in the consecutive
five epochs. Extended C4.5 decision tree algorithm is constructed
to classify the records. The input training records are given and
the corresponding gain ratio for each of the attribute is calculated.
The discrete and continuous attributes are identified from the in-
put records. Then the tree is constructed based on the gain ratio.
Following the each individual path in the tree, the rules are gener-
ated. The output of this module is decision tree. The portion of
decision tree evolved is shown below
6. Results and discussion

6.1. Evaluation of neurotree on proposed framework – objective#3

To demonstrate the increase in the detection performance, we
compare the detection rate of the neurotree classifier with other
classifiers like Extended C4.5 and neural network ensemble with
modified activation function (NN⁄), which proves that our claim
is valid. i.e., reduction of false alarm errors, increase the detection
rates of the classifiers and reduce the false alarm rates. The perfor-
mance comparison for the proposed system with Extended C4.5
and neural network ensemble with modified activation function
(NN⁄) is presented in Table. 4. The detection and error rates ob-
tained by various classifiers are shown in Figs. 4 and 5. Reduction
of error is more important in IDS as mentioned in the previous sec-
tion. It could be noted from Table 2 that the decrease in the mean
absolute error, on an average, is 0.11% from 0.29% to 0.18%. Simi-
larly, the root mean squared error has a drop by 1.78% from
5.42% to 3.64% on an average, relative absolute error has reduced
by 2.0228% from 5.366% to 3.3432% and root relative squared error
has reduced to 22.0407. We noted that there is a change in total er-
ror as the weight values w1 and w2 are changed. From experiment
we found that false positive error was reduced considerably when
w1 is assigned 0.8 and w2 is assigned 0.2. Thus the proposed acti-
vation function which is designed to reduce the error rates proves
to be superior.

6.2. Investigation of detection capability with 23 classes – objective#4

In this experiment dataset is formed using 23 classes like smurf,
back, normal etc and with 16 features selected using GA. In this
testing phase the detection rate of imap, spy, perl etc is very low
when compared to other classes. This is due to the presence very
low number of traffic patterns for these classes. The overall detec-
tion rate is 98.4%. From this it can be concluded that neurotree
detection paradigm performs better when specific attack types
are provided. The detailed accuracy for each class is shown below.
TP
Rate
FP
Rate
Precision
 Recall
 F-
Measure
Class
0.987
 0.042
 0.964
 0.987
 0.975
 normal

0.318
 0.001
 0.778
 0.318
 0.452
 warezclient

0.999
 0.004
 0.991
 0.999
 0.995
 neptune

0.989
 0.007
 0.829
 0.989
 0.902
 ipsweep

0.8
 0.001
 0.857
 0.8
 0.828
 teardrop

0.911
 0.001
 0.953
 0.911
 0.932
 satan

0.855
 0.001
 0.93
 0.855
 0.891
 portsweep

0.983
 0.001
 0.95
 0.983
 0.966
 smurf

0.8
 0.001
 0.933
 0.8
 0.862
 nmap

0
 0
 0
 0
 0
 warezmaster

0.074
 0
 0.667
 0.074
 0.133
 back

0
 0
 0
 0
 0
 land

1
 0
 1
 1
 1
 pod

0.833
 0
 0.625
 0.833
 0.714
 buffer_overflow

0
 0
 0
 0
 0
 loadmodule

0
 0
 0
 0
 0
 rootkit

1
 0
 0.833
 1
 0.909
 guess_passwd

0
 0
 0
 0
 0
 ftp_write

0
 0
 0
 0
 0
 imap

0
 0
 0
 0
 0
 spy

0
 0
 0
 0
 0
 perl

0
 0
 0
 0
 0
 multihop

0
 0
 0
 0
 0
 phf
6.3. Evaluation of neurotree in detection performance – objective#6

To demonstrate the increase in the detection performance, we
compare the detection rate of the proposed classifier with other
six decision tree classifiers like Decision Stump, C4.5, Naive Baye’s

Table 5
Performance evaluation of proposed classifier with six decision tree classifiers.

Classifiers Detection percentage Error percentage

Decision Stump 79.73 20.27
C4.5 92.1 7.9
Naïve Bayes 92.27 7.73
Random Forest 89.21 10.79
Random Tree 88.98 11.02
REP Tree 89.11 10.89
Proposed 98.38 1.62

0

20

40

60

80

100

Decision
Stump

C4.5 Naïve
Bayes

Random
Forest

Random
Tree

REP Tree Proposed

Classifiers

Performance Comparision of Various Decision Tree Classifiers

Detection(%) Error(%)

Fig. 6. Performance comparison of various decision tree classifiers with the
proposed approach.

Performance Comaprision

0
0.5

1
1.5

2
2.5

3
3.5

4

Neurotree NN* Extended C4.5
Detection Algorithms

E
rr

or
 P

er
ce

nt
ag

e Error(%)

Fig. 5. Error percentage comparison for neurotree, NN⁄ and extended C4.5.

140 S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141
Tree, Random Forest, Random Tree and Representative (REP) tree
model, which proves that our claim is valid. The performance com-
parison for the proposed system with six decision tree classifiers is
presented in Table 5.

From Fig. 6, it has been inferred that detection rate of proposed
approach is better in comparison with other approaches like Deci-
sion Stump, C4.5, Naïve Bayes, Random Forest, Random Tree and
REP tree. This is due to the adapted fitness function which uses
specificity and sensitivity as the metrics.
7. Discussion and conclusion

This work proposes lightweight IDS for multi-class categoriza-
tion. The system is aimed at making improvements on existing
work in three perspectives. Firstly, the input traffic pattern is pre-
processed and redundant instances are removed. Next, a wrapper
based feature selection algorithm is adapted which has a greater
impact on minimizing the computational complexity of the classi-
fier. Finally, a neurotree model is employed as the classification en-
gine which imparted a detection rate of 98.4% which is superior to
NN⁄ and extended C4.5. Objective 4 summarizes the characteristics
of our proposed method with various performance metrics like TP
rate, FP rate, Precision, Recall and F-measure. It could be observed
that the proposed system is better even when the dataset is pre-
sented with different number of classes. This justifies our claim
that the proposed features and learning paradigm neurotree is a
promising strategy to be applied on intrusion detection.

The main findings can be summarized as follows:

(1) The performance of the IDS is necessarily proportional to the
training data, machine learning technique and the features
selected to detect intrusion.

(2) The average classification rate (98.4%) for our proposed sys-
tem is better to existing systems discussed in literature.

(3) The training and test database collects a larger number of
normal and anomaly samples that were collected from
KDD and are preprocessed to remove duplicate instances.

(4) The system is operated blindly and can detect specific attack
type.

(5) The system is more suitable for multi-class classification
problem which is a promising one.
References

Bauer, Eric, & Kohavi, Ron (1998). An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants machine learning. Kluwer Academic
Publisher. 1–38.

Amor, Nahla B., Benferhat, S., Elouedi, Z. (2004). Naive Bayes vs decision trees in
intrusion detection systems. In: Proceedings of the 2004 ACM symposium on
Applied computing, Cyprus, pp. 420–424.

Benferhat, S. Tabia, K. (2005). On the combination of Naive Bayes and decision trees
for intrusion detection. In: IEEE International Conference on Computational
Intelligence for Modelling, Control and Automation, 2005 and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce,1
(2006), pp. 211–216.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and
regression trees. Monterey, CA: Wadsworth.

J. Cannady. (1998). Artificial Neural Networks for Misuse Detection. In: National
Information Systems Security Conference.

Fayyad, U. M., & Uthurusamy, R. (2002). Evolving data mining into solutions for
insights. Communications of the ACM, 45, 28–31.

Gaddam, Shekhar R., Phoha Kiran, Vir V., & Balagani, S. (2007). K-Means+ID3: A
novel method for supervised anomaly detection by cascading K-Means
clustering and ID3 decision tree learning methods. IEEE Transactions on
Knowledge and Data Engineering, 19, 3.

Han, S. J., & Cho, S. B. (2006). Evolutionary neural networks for anomaly detection
based on the behavior of a program. IEEE Transactions on Systems, Man and
Cybernetics Part B: Cybernetics, 36, 559–570.

Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for
classification and clustering. IEEE Transactions on Knowledge and Data
Engineering, 17, 491–502.

Joo, D., Hong, T., & Han, I. (2003). The neural network models for IDS based on the
asymmetric costs of false negative errors and false positive errors. Expert
Systems with Applications, 25, 69–75.

KDD Cup. (1999). Available on: http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, 2007.

Koutsoutos, S., Ioannis T. Christou, Efremidis, S., A Classifier Ensemble Approach to
Intrusion Detection for Network-Initiated Attacks, In: Proceeding of the
international conference on Emerging Artificial Intelligence Applications in
Computer Engineering: Real Word AI Systems with Applications in eHealth,
HCI, Information Retrieval and Pervasive Technologies, 2007, pp.307–319.

Linda, O., Vollmer, T., Manic, M. (2009). Neural network based intrusion detection
system for critical infrastructures. In: Proceedings of IE EE international joint
conference on Neural Networks, Georgia, pp. 102–109.

Mitra, P., Murthy, C. A., & Pal, S. K. (2002). Unsupervised Feature Selection Using
Feature Similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24, 301–312.

Prema Rajeswari, L., & Kannan, A. (2008). An active rule approach for network
intrusion detection with enhanced C4.5 Algorithm, I. Journal of Communications,
Network and System Sciences, 285–385.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
Quinlan, J. R. (1993). C4.5: Programs for machine learning. Springer.
Sarasamma, S., Zhu, Q., & Huff, J. (2005). Hierarchical Kohonen net for anomaly

detection in network security. IEEE Transactions on System, Man and Cybernetics,
Part B: Cybernetics, 35, 302–312.

Shun, J. Malki, H. A., Network Intrusion Detection System Using Neural Networks.
In: Proceedings of fourth IEEE International Conference on Natural Computation,
ICNC’08, 2008, pp. 242–246.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

S.S. Sivatha Sindhu et al. / Expert Systems with Applications 39 (2012) 129–141 141
Stein, Gary, Chen, Bing, Wu, Annie S., & Hua, Kien A. (2005). Decision tree classifier
for network intrusion detection with GA-based feature selection. Proceedings of
the 43rd annual Southeast regional conference (Vol. 2, pp. 136–141). Georgia:
ACM Publisher.

Tavallaee, M., Bagheri, E., Lu, W., Ali A. Ghorbani. (2009). A Detailed Analysis of the
KDD CUP 99 Data Set. In: Proceedings of IEEE Symposium on Computational
Intelligence in Security and Defense Applications.

Thomas, C., & Balakrishnan, N. (2009). Improvement in intrusion detection with ad
vances in sensor fusion. IEEE Transactions on Information Forensics and Security
(4), 542–551.

Weiming, Hu, Wei, Hu, & Maybank, S. (2008). AdaBoost based algorithm for
network intrusion detection. IEEE Transactions on Systems, Man and Cybernetics,
Part B: Cybernetics, 38, 577–583.
Waikato environment for knowledge analysis (weka) version 3.5.7. Available on:
http://www.cs.waikato.ac.nz/ml/weka/, 2008.

Xiang, C., & Lim, S. M. (2005). Design of multiple-level hybrid classifier for intrusion
detection system. IE EE Transaction on System, Man and Cybernetics, Part A:
Cybernetics, 2, 117–122.

Yasami, Y., & Mozaffari, S. P. (2009). A novel unsupervised classification approach
for network anomaly detection by K-Means clustering and ID3 decision tree
learning methods. The Journal of Supercomputing. Netherlands: Springer.

Zhou, Z.-H., & Jiang, Y. (2004). NeC4.5: Neural ensemble based C4.5. IEEE
Transactions on Knowledge and Data Engineering, 16, 770–773.

http://www.cs.waikato.ac.nz/ml/weka/

	Decision tree based light weight intrusion detection using a wrapper approach
	1 Introduction
	2 Related work
	3 Design of proposed system
	3.1 Preprocessing of network traffic pattern
	3.2 Rationale for the choice of GA in feature extraction
	3.2.1 Individual’s encoding
	3.2.2 Fitness function
	3.2.3 Genetic operators
	3.2.4 Algorithm for feature selection

	3.3 Post-processing of resulting feature vector
	3.4 Rationale for the choice of neurotree as classifier
	3.4.1 Neural network ensemble
	3.4.2 Analysis of error rate of neural network
	3.4.3 Extended C4.5

	4 Research framework
	4.1 Functional framework of wrapper based IDS
	4.2 Proposed neurotree algorithm
	4.3 Performance measurement indices

	5 Test scenario
	5.1 Test objectives
	5.2 Preparation of test dataset
	5.2.1 Influence of feature vector
	5.2.2 Influence of neurotree classifier
	5.2.3 Detection with mismatch between training and test dataset

	5.3 Preprocessing – redundancy check
	5.4 Feature extraction – objective#1
	5.4.1 Attribute evaluators
	5.4.2 Search methods

	5.5 Post-processing − objective#2
	5.6 Building and training classifier

	6 Results and discussion
	6.1 Evaluation of neurotree on proposed framework – objective#3
	6.2 Investigation of detection capability with 23 classes – objective#4
	6.3 Evaluation of neurotree in detection performance – objective#6

	7 Discussion and conclusion
	References

